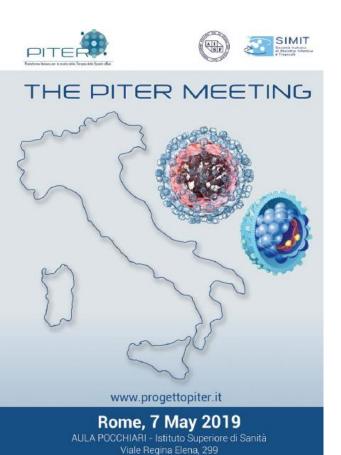


Regione Lombardia Massimo Puoti


vept. of Infectious Diseases

ASST Grande Ospedale Metroplitano

Niguarda

Milan, Italy

HCV/HIV COINFECTION: WHAT IS LEARNED FROM PITER AND **COHORT STUDIES**

Disclosures

 Honoraria for consulting or speaking (past 5 years): AbbVie, Beckman Coulter, BMS, Janssen, Gilead Sciences, MSD, Roche, and ViiV

Research grants (past 5 years): Gilead Sciences, ViiV, Roche,
 Pfizer Astellas and Novartis

HCV/HIV COINFECTION WHAT IS LEARNED FROM PITER AND COHORT STUDIES

- TWO DIFFERENT POPULATIONS: DATA FROM PITER COHORT
- SMILAR TREATMENT RESPONSE?
- ACCESS TO TREATMENT: ISSUES IN HIV COINFECTED PATIENTS

HCV/HIV COINFECTION WHAT IS LEARNED FROM PITER AND COHORT STUDIES

- TWO DIFFERENT POPULATIONS: DATA FROM PITER COHORT
- SMILAR TREATMENT RESPONSE?
- ACCESS TO TREATMENT: ISSUES IN HIV COINFECTED PATIENTS

Clinical and virological characteristics of HIV/HCV coinfected versus HCV monoinfected patients: an interim evaluation in the PITER cohort (data updated On April 2019)

Aim

We aimed to assess the epidemiological, clinical and treatment aspects in a real-life cohort of patients with HIV/HCV coinfection compared to HCV monoinfected patients, following viral eradication due to DAA treatment

Methods

- We included in the analysis any HIV/HCV coinfected patients and HCV infected patients with known HIV negative status, consecutively enrolled in PITER between April 2014 and March 2019, who have started DAA treatment and with available follow-up (at least 6 months).
- Patient's main baseline (pre-treatment) characteristics were reported as median and range or as proportions for continuous and categorical variables, respectively. The Mann-Whitney rank-sum test was used for continuous variables to assess differences between distribution, and the Chi-squared test was used for comparisons of proportions. A p value <0.05 was considered significant.
- HCC appearance was evaluated in patients with pre-treatment diagnosis of liver chirrosis and without the HCC diagnosis at baseline. Variables independently associated to de novo HCC appearance after achieving SVR12 were evaluated by Cox regression analysis.

Main baseline characteristics of HIV/HCV co-infected and HCV mono-infected patients (1)

	_	co-infected 197*)	HCV mor (N=2		
Quantitative variables	Median	Range	Median	Range	p**
Age	52	32 - 66	62	20 - 86	< 0.001
ALT	55.5	0.0 - 301.0	62.0	0.0 - 969.0	> 0.05
AST	53.0	0.0 - 371.0	56.0	0.0 - 652.0	> 0.05
Glycemia	98.5	64.0 - 373.0	98.0	0.9 - 351.0	> 0.05

^{*} For some variables inconsistencies are due to missing values

^{**} p value Mann–Whitney rank-sum test

Main baseline characteristics of HIV/HCV co-infected and HCV mono-infected patients (2)

		HCV/HIV co-infected (N=197*) HCV mono-infected (N=2726*)				
Categorical variables		N.	%	N.	%	P**
Sex	Male	147	74.6	1484	54.4	< 0.001
	Female	50	25.4	1241	45.5	
	Transgender	0	0.0	1	0.04	
BMI	Underweight	9	4.9	45	1.6	< 0.001
	Normal	129	70.5	1273	46.8	
	Overweight	38	20.8	1110	40.8	
	Obese	7	3.8	293	10.8	
Alcohol use	Never	85	48.6	1808	67.8	< 0.001
	Current	54	30.9	314	11.8	
	Past	36	20.6	544	20.4	
Genotype	nd	2	1.0	13	0.5	< 0.001
	1 (Non subtyped)	11	5.6	67	2.5	
	1a	60	30.5	353	12.9	
	1b	28	14.2	1403	51.5	
	2	7	3.5	440	16.1	
	3	54	27.4	273	10.0	
	4	35	17.8	174	6.4	
	5	0	0.0	3	0.1	
Cirrhosis	Yes	92	47.2	1284	48.1	> 0.05
	No	103	52.8	1387	51.9	
Diabetes	Yes	18	9.1	400	14.7	< 0.05
	No	179	90.9	2326	85.3	

^{*} For some variables inconsistencies are due to missing values

^{**} p value Chi-square test

Main baseline characteristics

of HIV/HCV co-infected and HCV mono-infected patients with liver cirrhosis (1)

		co-infected =92*)	HCV mor		
Quantitative variables	Median	Range	Median	Range	p**
Age	52	36 - 55	63	28 - 86	< 0.001
ALT	57.0	0.0 - 284.0	74.0	0.0 - 797.0	< 0.05
AST	59.0	0.0 - 371.0	72.0	0.0 - 652.0	> 0.05
Glycemia	99.0	68.0 - 373.0	101.0	1.0 - 351.0	> 0.05

Main baseline
characteristics
of HIV/HCV co-infects
and HCV mono-infects
patients with liver
cirrhosis (2)

cted cted er	
_	
ncies	

			Ticv/Tilv co illiccica		1164 111611		
			(N=	92*)	(N=1	.284*)	
	Categorical var	iables	N.	%	N.	(%)	P**
	Sex	Male	73	79.3	763	59.4	< 0.001
-		Female	19	20.7	520	40.5	
		Transgender	0	0.0	1	0.01	
	BMI	Underweight	4	4.5	13	1.0	< 0.001
		Normal	63	71.6	516	40.2	
		Overweight	16	18.2	578	45.1	
		Obese	5	5.7	176	13.7	
	Alcohol use	Never	39	50.0	812	64.6	< 0.001
		Current	21	26.9	119	9.5	
he		Past	18	23.1	326	25.9	
<u>ed</u>	Genotype	nd	0	0.0	7	0.5	< 0.001
<u>ed</u>		1 (Non					
		subtyped)	3	3.2	29	2.3	
		1a	26	28.3	164	12.8	
		1b	13	14.1	706	55.0	
		2	3	3.3	163	12.7	
		3	33	35.9	135	10.5	
		4	14	15.2	79	6.2	
		5	0	0.0	1	0.1	
	Diabetes	Yes	9	9.8	275	21.4	< 0.05
		No	83	90.2	1009	78.6	
	Child-pugh	A-5	28	47.5	764	68.4	< 0.001
	score	A-6	12	20.3	242	21.7	
		B-7	9	15.2	67	6.0	
		B-8	5	8.5	29	2.6	
		B-9	3	5.1	13	1.1	
es		C-10	2	3.4	2	0.2	
	нсс	Yes	2	2.2	96	7.5	> 0.05
		No	90	97.8	1188	92.5	

HCV/HIV co-infected

HCV mono-infected

^{*} For some variables inconsistend are due to missing values ** p value Chi-square test

Variables independently associated to de-novo HCC appearance following SVR12 achievement

	Crude HR	95% CI	Adjusted HR	95% CI
HIV infection	0.61	0.15 - 2.51	0.53	0.06 - 4.41
Age (increasing years)	1.05	1.02 - 1.09	1.06	1.02 - 1.10
ALT (increasing U/I)	1.00	0.99 - 1.00	0.99	0.98 - 1.00
AST (increasing U/I)	1.00	0.99 - 1.00	1.01	0.99 - 1.01
Genotype (3 vs others)	1.27	0.57 - 2.82	2.67	1.01 - 7.08
Diabetes	1.43	0.76 - 2.71	1.73	0.85 - 3.54
Child-pugh score (increasing units)	1.43	1.09 - 1.88	1.49	1.07 - 2.06

Conclusion

 Age, genotype 3 and liver disease severity (in terms of Child Pugh score deterioration) result as factors independently associated with *de novo* HCC occurrence in DAA treated patients following SVR12 achievement.

 HIV coinfection is not associated with HCC apparence, after adjusting for considered confounding factors.

HCV/HIV COINFECTION WHAT IS LEARNED FROM PITER AND COHORT STUDIES

- TWO DIFFERENT POPULATIONS: DATA FROM PITER COHORT
- SMILAR TREATMENT RESPONSE?
- ACCESS TO TREATMENT: ISSUES IN HIV COINFECTED PATIENTS

Efficacy and safety of direct-acting antiviral regimens in HIV/HCV-co-infected patients – French ANRS CO13 HEPAVIH cohort

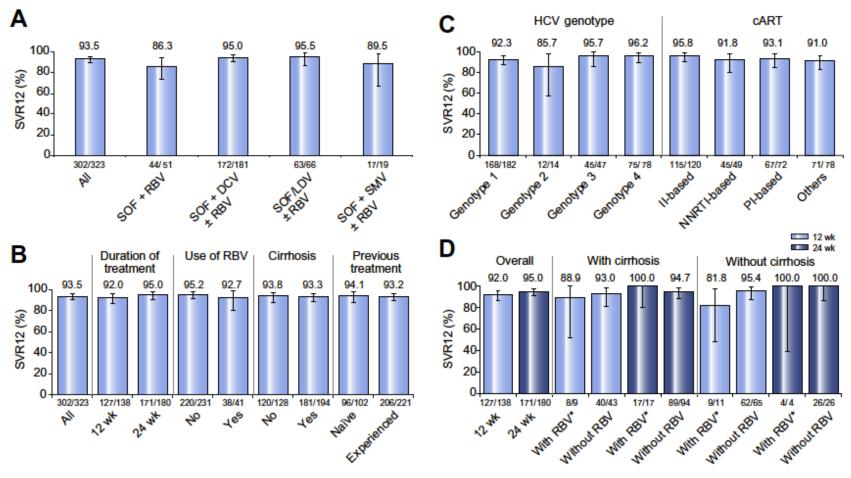
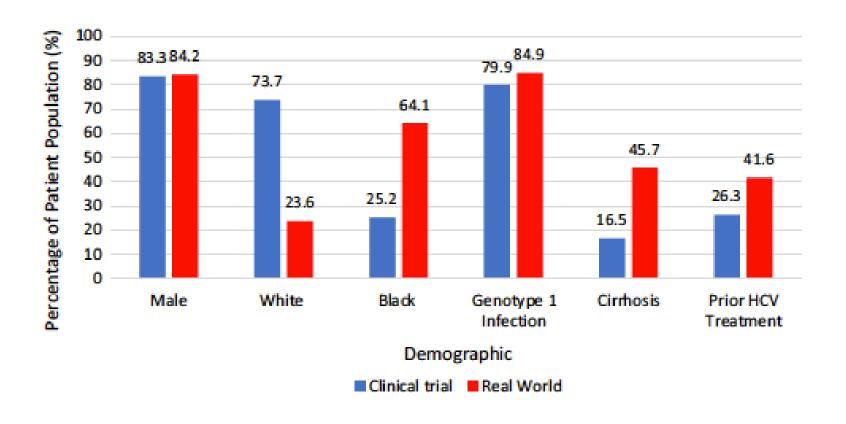
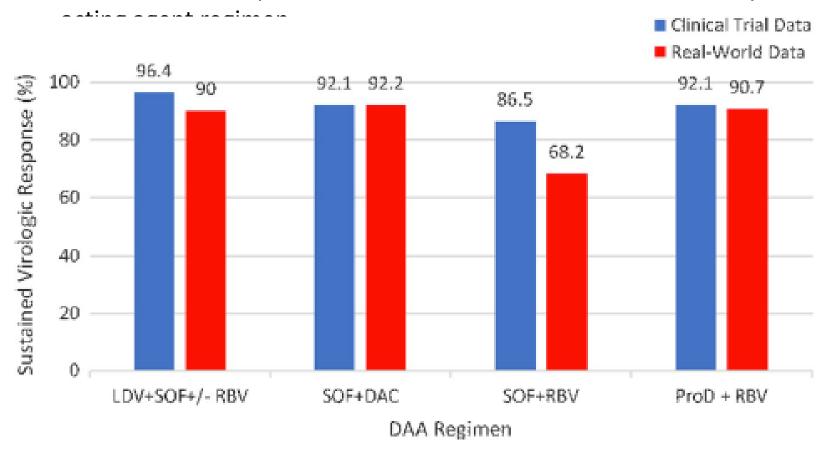



Fig. 1. Frequencies of sustained virological responses 12 weeks after end of therapy (SVR12). (A) Data grouped according to prescribed DAA regimen which was evaluated in adjusted exact logistic regression analysis (see Table 2A, B). (B*, C and D*) Data grouped according to the selected covariables which were evaluated in adjusted exact logistic regression analysis (see Table 2A, B). *Patients receiving SOF + RBV have been excluded from this analysis. Vertical bars represent 95% confidence intervals calculated using the exact binomial distribution.

Similar Sustained Virologic Response in Real-World and Clinical Trial Studies of Hepatitis C/Human Immunodeficiency Virus Coinfection


Comparison of patient demographics between clinical trials and real-world data

Sikavi C et al Digestive Diseases and Sciences (2018) 63:2829–2839

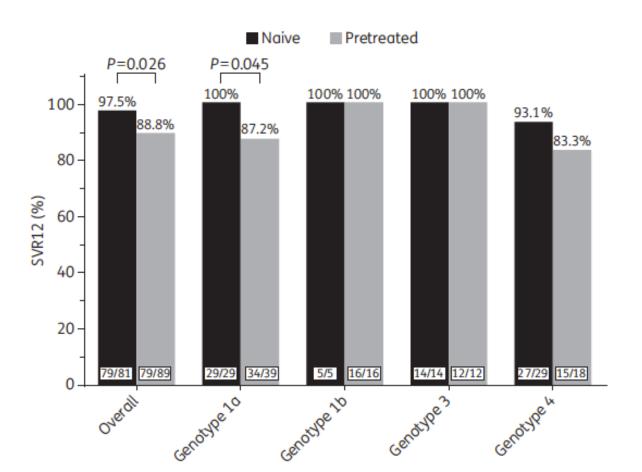
Similar Sustained Virologic Response in Real-World and Clinical Trial Studies of Hepatitis C/Human Immunodeficiency Virus Coinfection

Sustained viral response for clinical trial versus realworld data by direct-

Sikavi C et al Digestive Diseases and Sciences (2018) 63:2829–2839

Similar Sustained Virologic Response in Real-World and Clinical Trial Studies of Hepatitis C/Human Immunodeficiency Virus Coinfection

Comparison of efficacy and effectiveness of various subgroups


Subgroup	Efficacy [CI]	Effectiveness [CI]	Relative Risk [CI]	p value
DAA Regimen				
Ledipasvir/Sofosbuvir±Ribavirin	0.964 [0.94-0.98]	0.900 [0.88-0.92]	0.93 [0.91-0.96]	0.0001
Sofosbuvir and Daclatasvir ± Ribavirin	0.921 [0.88-0.95]	0.922 [0.89-0.94]		1.0000
Sofosbuvir and Ribavirin	0.865 [0.82-0.92]	0.682 [0.56-0.79]	0.79 [0.66-0.94]	0.0009
ProD+RBV	0.921 [0.82-0.97]	0.907 [0.84-0.95]		1.0000
African-American	0.919 [0.88-0.95]	0.921 [0.90-0.94]		0.9000
Cirrhosis	0.884 [0.83-0.92]	0.884 [0.86-0.90]		1.0000
Prior treatment experience	0.945 [0.92-0.97]	0.900 [0.88-0.92]	0.95 [0.92-0.98]	0.0090
Genotype 1	0.929 [0.91-0.94]	0.914 [0.90-0.93]		0.1560
Genotype other than 1	0.909 [0.87-0.94]	0.918 [0.88-0.94]		0.7720

ProD + RBV ombitasvir, paritaprevir co-dosed with ritonavir, and dasabuvir, with ribavirin, CI 95% confidence interval

Efficacy and safety of direct antiviral agents in a cohort of cirrhotic HCV/HIV-coinfected patients

Jordi Navarro^{1,2*}, Montserrat Laguno³, Helem Haydee Vilchez⁴, Jose M. Guardiola⁵, Jose A. Carrion⁶, Luis Force⁷, Mireia Cairó⁸, Carmen Cifuentes⁹, Josep Vilaró¹⁰, Josep Cucurull¹¹, Andrés Marco¹², Mercè Roget¹³, Eva Erice¹⁴ and Manuel Crespo¹⁵ on behalf of the Catalano-Balear Study Group†

¹Hospital Universitari de la Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España; ²Institut de Recerca Hospital Vall d'Hebron, Barcelona, España; ³Hospital Clinic de Barcelona, Barcelona, España; ⁴Hospital Universitari de Son Espases, Palma de Mallorca, España; ⁵Hospital de la Santa Creu i Sant Pau, Barcelona, España; ⁵Hospital del Mar, Institut Hospital del Mar d'Investigacions Médiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, España; ¹Hospital de Mataró, Mataró, España; ⁸Hospital Universitari Mútua de Terrassa, Terrassa, España; ⁹Hospital de Son Liàtzer, Palma de Mallorca, España; ¹⁰Hospital Universitari de Vic, Vic, España; ¹¹Hospital de Figueres, España; ¹²Programa Penitenciari, Institut Cotalò de la Solut, Barcelona, España; ¹³Consorci Sanitari de Terrassa, Terrassa, España; ¹⁴Fundació privada Hospital de Mollet, Mollet del Vallès, España; ¹⁵Complexo Hospitalario Universitario de Viqo, IIS Galicio Sur, España

Real-World Clinical Efficacy and Tolerability of Direct-Acting Antivirals in Hepatitis C Monoinfection Compared to Hepatitis C/Human Immunodeficiency Virus Coinfection in a Community Care Setting

Vijay Gayam¹, Muhammad Rajib Hossain¹, Mazin Khalid¹, Sandipan Chakaraborty¹, Osama Mukhtar¹, Sumit Dahal¹, Amrendra Kumar Mandal¹, Arshpal Gill¹, Pavani Garlapati¹, Sreedevi Ramakrishnaiah¹, Khalid Mowyad², Jagannath Sherigar³, Mohammed Mansour¹, and Smruti Mohanty³

Gayam V, et al: DAAS in HCV Monoinfection and HCV/HIV Coinfection 699

Fig. 2. Treatment response in each group measured by overall sustained virologic response at 12 weeks post-treatment (SVR12). HIV, human immunodeficiency virus.

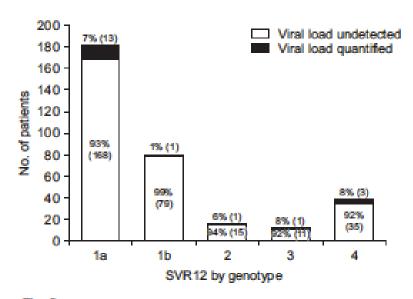
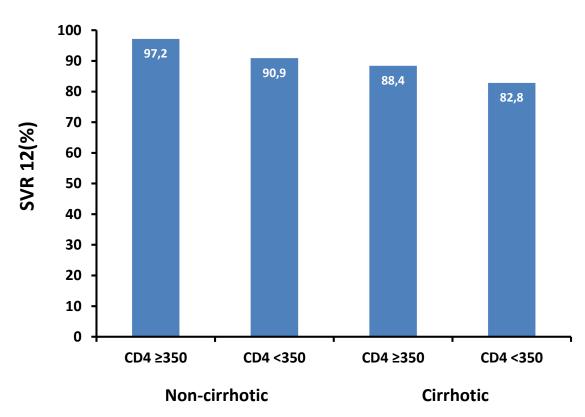


Fig. 3. Sustained virologic response at 12 weeks post-treatment (SVR12) by genotype.

Department of Medicine and Gastroenterology, Interfaith Medical Center, New York, NY, Department of Medicine, Detroit Medical Center,


HIV-coinfected patients respond worse to direct-acting antiviralbased therapy against chronic hepatitis C in real life than HCV monoinfected individuals: a prospective cohort study

- In a prospective multicohort study, patients who initiated DAA-based therapy at the Infectious Disease Units of 33 hospitals throughout Spain were included.
- Relaps after end-of-treatment response to IFN-free therapy was observed in 3/208 (1.4%) HCV monoinfected subjects and 10/231 (4.4%) HIV/HCV-coinfected individuals (p = 0.075).
- In a multivariate analysis adjusted for age, sex, transmission route, body-mass index, HCV genotype, and cirrhosis, the absence of HIV-coinfection (adjusted odds ratio: 3.367; 95% confidence interval: 1.15-9.854; p = 0.027) was independently associated with SVR12 to IFN-free therapy.

DAA Really Similarly Effective in HIV Coinfection?

SVR12 According to CD4 and Cirrhosis Status

- GECCO Cohort (9 German centres)
- n=1505
- 1156 mono-,
 349 coinfected
- Liver cirrhosis 29% (31% vs. 22%)
- Overall-SVR 95%,
 95% monoinfected,
 94% coinfected

SVR lower in pts. with CD4 <350/µl and liver cirrhosis

17,269 patients with HCV-infection initiated DAA-based Rx in Madrid from Nov 2014 to Sep 2017

1,407 patients met inclusion criteria

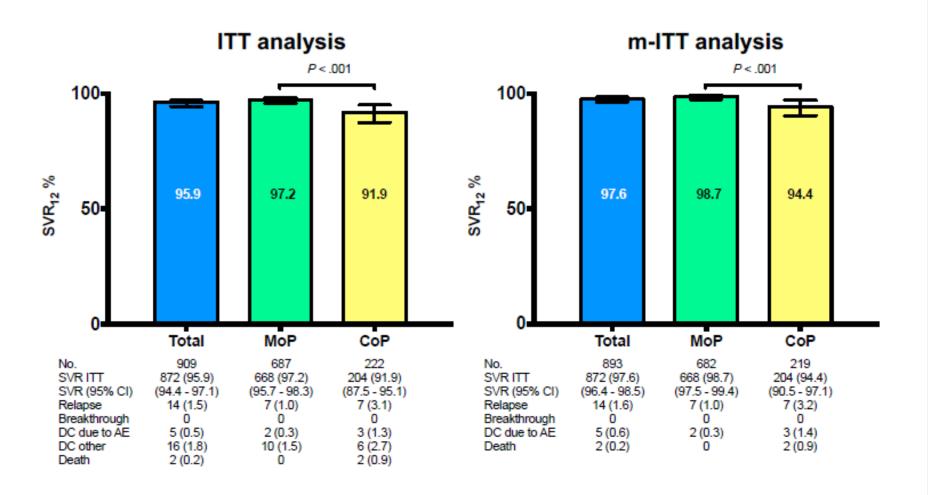
1,102 HCV-Monoinfected patients (**MoP**) 305 HIV/HCV-Coinfected patients (**CoP**)

Berenguer J et al CROI 2018;#607

Baseline characteristics of study population

	8 Weeks				12 weeks				TOTAL
	Total	MoP	CoP	Р	Total	MoP	CoP	Р	MoP + CoP
VARIABLES	N=498	N=415	N=83		N=909	N=687	N=222		N=1,407
Age #	56 (49-66)	58 (49-68)	50 (46-54)	<.001	56 (50-67)	60 (52-70)	51 (47-54)	<.001	56 (50-67)
Male sex ‡	259 (52.0)	193 (46.5)	66 (79.5)	<.001	515 (56.7)	348 (50.7)	167 (75.2)	<.001	774 (55.0)
Genotype ‡				<.001				<.001	
1a	160 (32.1)	95 (22.9)	65 (78.3)		408 (44.9)	235 (34.2)	173 (77.9)		568 (40.4)
1b	323 (64.9)	312 (75.2)	11 (13.2)		468 (51.5)	432 (62.9)	36 (16.2)		791 (56.2)
1 non-subtyped	15 (3.0)	8 (1.9)	7 (8.4)		33 (3.6)	20 (2.9)	13 (5.9)		48 (3.4)
HCV RNA									
Log IU/mL#	5.9 (5.4-6.4)	5.9 (5.4-6.3)	6.1 (5.6-6.5)	.03	6.4 (6.0-6.8)	6.4 (5.9-6.8)	6.5 (6.0-6.8)	.05	6.2 (5.7 – 6.7)
> 6x10e6 IU/mL *	18 (3.6)	12 (2.9)	6 (7.2)	.05	224 (24.6)	161 (23.4)	63 (28.4)	.14	242 (17.2)
TE									
No ‡	8 (1.6)	8 (1.9)	0		35 (3.8)	35 (5.1)	0		43 (3.1)
Yes ‡	490 (98.4)	407 (98.1)	83 (100.0)		874 (96.1)	652 (94.9)	222 (100.0)		1,364 (96.9)
kPa *	8.6 (7.9-9.4)	8.6 (7.9-9.3)	8.6 (7.8-10.0)	.61	9.1 (8.1-10.4)	9.2 (8.1-10.5)	9.0 (8.1-10.3)	.31	8.8 (8.0 - 10.2)
≥ 9.5 kPa ‡	122 (24.9)	95 (23.3)	27 (32.5)	.08	402 (46.0)	312 (47.8)	90 (40.5)	.06	524 (38.4)

= median (IQR)


‡ = n (%)

MoP = HCV monoinfected patients CoP = HIV/HCV coinfected patients

TE = transient elastography

Berenguer J et al CROI 2018;#607

Treatment outcomes of LDV/SOF 12 weeks

MoP = HCV monoinfected patients CoP = HIV/HCV coinfected patients Berenguer J et al CROI 2018;#607

Rates of SVR12 according to the presence of cirrhosis, decompensated cirrhosis, history of previous interferon treatment and HCV genotype in 5464 HCV infected patients treated in Lombardy with EASL recommended treatment schedules stratified according to HIV co-infection

Study	ALL	Cirrhotics	Decompensated	PEGIFN Exp.	Genotype 3
Group					
HIV+	4444/4564	2512/2588	71/75	1434/1472	413/435
	(97,4%)	(97,1%)	(94,7%)	(97,4%)	(94,9%)
HIV-	872/900	557/576	46/50	150/157	213/225
	(96,9%)	(96,7%)	(92%)	(95,5%)	(94,7%)

Multivariate logistic regression identified two predictors of lack of SVR12 HCV G3 infection (OR 2.25 95% CI 1.5-3.66 p<0.00001) and decompensation at baseline (OR 2.48 95% CI 1,16-5,3 p=0,0187). HIV coinfection was not associated with an increased risk of lack of SVR12 (OR 0,95 95% CI 0,61-1,47)

HIV related Characteristics:

median CD4 597 (IQR385-841) cells/mmc

CD4 < 200 7% HIV RNA supppressed 96.7% 3% not on cART 23% previous Dx of AIDS

Spinetti A. et al on Behalf of RETE LOMBARDIA HCV – NAVIGATORE . AASLD 2018

HCV/HIV COINFECTION WHAT IS LEARNED FROM PITER AND COHORT STUDIES

- TWO DIFFERENT POPULATIONS: DATA FROM PITER COHORT
- SMILAR TREATMENT RESPONSE?
- ACCESS TO TREATMENT: ISSUES IN HIV COINFECTED PATIENTS

Trends in HCV treatment uptake, efficacy and impact on liver fibrosis in the Swiss HIV Cohort Study.

- We compared treatment incidence, sustained virological response (SVR)12 and liver fibrosis stages between three time periods: period 1, 01/2009-08/2011 (prior to the availability of DAAs); period 2, 09/2011-03/2014 (first generation DAAs); period 3, 04/2014- 12/2015 (second generation DAAs).
- At the beginning of the third period, 876 SHCS participants had a chronic HCV infection of whom 180 (20%) started treatment with a second-generation DAA.
 Three-quarters of them had advanced liver fibrosis (Metavir ≥ F3) of whom 80% were cirrhotics.
- SVR12 was achieved in 173/180 (96%) patients, three patients died and four experienced a virological failure.
- Over the three time periods, treatment uptake (4.5/100 py, 5.7/100 py, 22.4/100 py) and efficacy (54%, 70%, 96% SVR12) continuously increased.
- The proportion of cirrhotic patients with replicating HCV infection in the SHCS declined from 25% at the beginning to 12% at the end of the last period.

Beguelin C et al Liver Int 2018: 38:424-31

RESEARCH ARTICLE

Disparities in direct acting antivirals uptake in HIV-hepatitis C co-infected populations in Canada

Sahar Saeed^{1,2}, Erin C Strumpf^{1,3}, Erica EM Moodie¹, Jim Young², Roy Nitulescu², Joseph Cox^{1,2}, Alexander Wong⁴, Sharon Walmsely^{5,6}, Curtis Cooper⁷, Marie-Lousie Vachon⁸, Valerie Martel-Laferriere⁹, Mark Hull¹⁰, Brian Conway¹¹ Marina B Klein^{2,6} and for the Canadian Co-Infection Cohort Study

Corresponding author: Marina Klein, Division of Infectious Diseases and Chronic Viral Illness Service, Department of Medicine, Glen site, McGill University Healt Centre, Montreal, QC, Canada. Tel: +(514) 843-2090/514-934-1934, ext. 32306. (marinaklein@mcgill.ca)

Table 2. Predictors of second-generation direct acting antiviral treatment initiation

	Unadjusted model HR (95% CI)	Adjusted model aHR (95% CI)
Age (per 10-year)	1.60 (1.37, 1.87)	1.12 (0.93, 1.35)
Indigenous people	0.23 (0.14, 0.37)	0.70 (0.43, 1.15)
Sex (reference heterosexua	l men)	
Women	0.71 (0.48, 1.04)	0.85 (0.53, 1.36)
MSM	2.38 (1.74, 3.24)	1.95 (1.33, 2.86)
Injection Drug Use (referen	nce non-PWID)	
Active PWID ^a	0.26 (0.18, 0.40)	0.60 (0.38, 0.94)
Past PWID ^b	0.54 (0.39, 0.75)	0.88 (0.58, 1.33)
Income (<\$18 000/year)	0.45 (0.34, 0.61)	0.50 (0.35, 0.71)
Alcohol use	0.96 (0.73, 1.27)	0.74 (0.58, 0.94)
Undetectable HIV viral load	2.55 (1.70, 3.83)	1.73 (1.20, 2.50)
Significant Liver Fibrosis (APRI > 1.5)	2.60 (1.94, 3.48)	2.28 (1.64, 3.16)
HCV genotype		
(reference genotype 1)		
2	1.21 (0.66, 2.24)	1.12 (0.57, 2.18)
3	0.59 (0.38, 0.92)	0.69 (0.42, 1.13)
4	2.48 (1.15, 5.22)	1.51 (0.66, 3.16)
Province of residence ^c (refe	erence British Columbia)	
Saskatchewan	0.02 (0.00, 0.17)	0.04 (0.01, 0.11)
Alberta/Ontario	1.00 (0.69, 1.44)	0.58 (0.24, 1.41)
Quebec	1.60 (1.15, 2.23)	1.52 (0.66, 3.51)

Adjusted model included all predictors listed in Table 2. Undetectable HIV RNA (RNA < 50 copies/mL).

MAJOR ARTICLE

Direct-Acting Antivirals Improve Access to Care and Cure for Patients With HIV and Chronic HCV Infection

Lauren F. Collins, Austin Chan, Jiayin Zheng, Shein-Chung Chow, Julius M. Wilder, Andrew J. Muir, and Susanna Naggie^{2,4}

¹Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; ²Division of Infectious Diseases, ³Department of Biostatistics and Bioinformatics, ⁴Duke Clinical Research Institute, and ⁵Division of Gastroenterology, Duke University, Durham, North Carolina

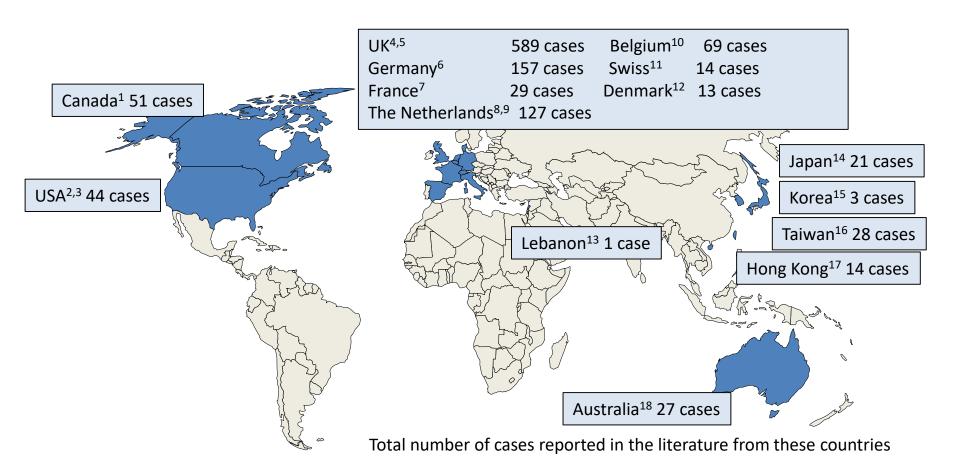
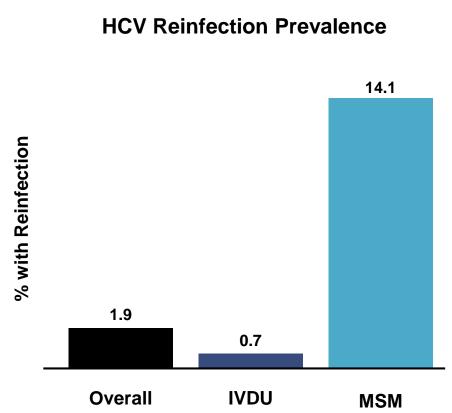

200 175 Median time to approval of DAA, 150 125 100 P = .30075 P = .00152 50 P = .37840.5 P = .545P < .000125 12 HCV HCV HCV HIV/HCV HIV/HCV HIV/HCV (Private) (Medicare) (NC Medicaid) (Private) (Medicare) (NC Medicaid)

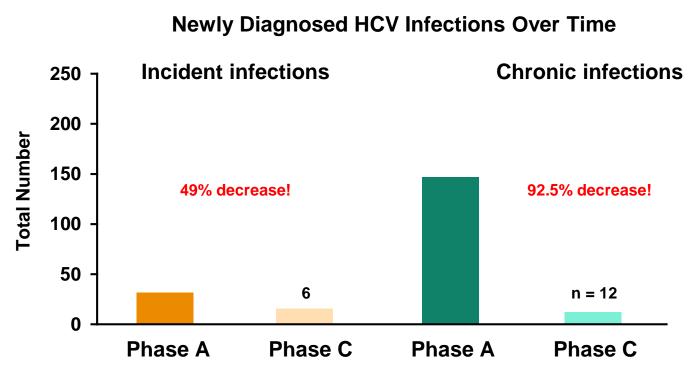
Table 3. Stepwise Multivariable Logistic Regression Model Assessing Predictors of HCV Treatment With Direct-Acting Antiviral Therapy in Patients With HIV/HCV

	Likelihood HIV/HCV Patient Treated With DA					
	Univar	riate Analysis	Multivariate Analysis			
	OR	95% CI	OR	95% CI		
Age <55 y	0.56	0.35-0.89	_	_		
Male	1.75	1.02-3.00	_	_		
Caucasian race	2.87	1.71-4.82	2.68	1.54-4.68		
CD4 count ≥200 cells/mm ³	4.74	2.00-11.21	3.65	1.41-9.43		
HIV viral load <200 copies/mL	11.76	3.64-37.98	6.64	1.99-22.16		
PI-based ART	1.03	0.62-1.72	_	_		
Cirrhosis	3.08	1.84-5.16	3.12	1.77-5.51		
HBV infection	1.89	0.64-5.56	_	_		

Abbreviations: ART, antiretroviral therapy; CD4, cluster of differentiation 4; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; OR, odds ratio; PI, protease inhibitor.


Acute outbreaks of HCV have been reported in HIV+ MSM across the world

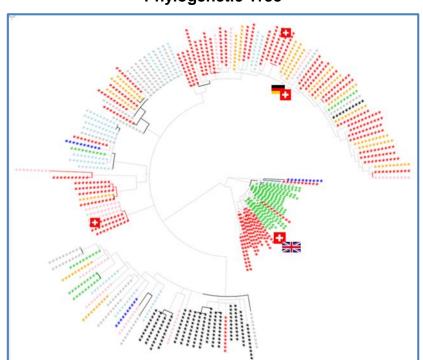
^{1.} Burchell AN, et al. Can J Infect Dis Med Microbiol 2015;26:17–22; 2. Luetkemeyer A, et al. J Acquir Immune Defic Syndr 2006;41:31–6; 3. Cox A, et al. Gastroenterology 2009;136:26–31; 4. Giraudon I, et al. Sex Transm Infect 2008;84:111–5; 5. Ruf M, et al. Euro Surveill 2008;13:1–3; 6. Vogel M, et al. Clin Infect Dis 2009;49:317–8; 7. Gambotti L, et al. Euro Surveill 2005;10:115–7; 8. Urbanus A, et al. AIDS 2009;23:F1–F7; 9. Arends JE, et al. Neth J Med 2011;69:43–9; 10. Bottieau E, et al. Euro Surveill 2010;15:1–8; 11. Rauch A, et al. Clin Infect Dis 2005;41:395–402; 12. Barfod TS et al. Scand J Infect Dis. 2011;43:145–8; 13. Dionne-Odom J, et al. Lancet Infect Dis 2009;9:775–83; 14. Nishijima T, et al. J Acquir Immune Defic Sundr 2014;65:213–7; 15. Lee S, et al. Korean J Intern Med 2016; doi: 10.3904/kjim.2015.353; 16. Sun YH, et al. J Clin Microbiol 2012;50:781–7; 17. Lin AWC, et al. J Int AIDS Soc 2014;17:19663; 18. Matthews GV, et al. Clin Infect Dis 2009;48:650–8


MSM Have Highest HCV Reinfection Risk

- German multi-center cohort (GECCO Cohort)
- 2074 HCV patients
- 66% GT1, 24% GT3
- 37% IVDU, 12% MSM
- 23% HIV coinfected
- Median 63 weeks until HCV reinfection (n=41, 36 in MSM)

TasP in HCV/HIV+ MSM: HCVREE Study

- 6-monthly HCV PCR Tests in the Swiss HIV Cohort (n=3722)
- 177 (4,8%) newly diagnosed HCV (Phase A) -> DAA Therapy
- After Re-Screening only 28 (0,8%) showed a renewed positive HCV PCR (Phase C)

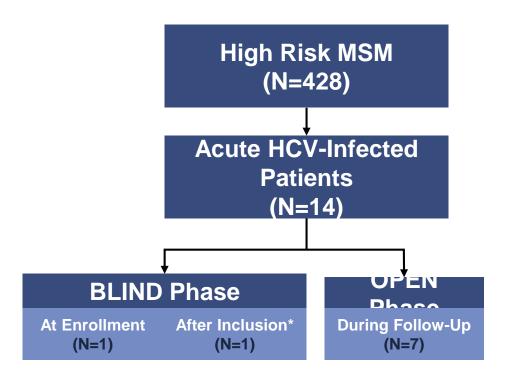


Braun L, et al. 25th CROI; Boston, MA; March 4-7, 2018. Abst. 81LB.

Virus without Boarders: HCV in MSM

- Phylogenetic analysis
- 29 HIV patients with HCV GT1a
- 90% of viral sequences found in 5 different European transmission clusters
- 1/3 "imported" infections (25% from Germany, 40% from UK)

Phylogenetic Tree



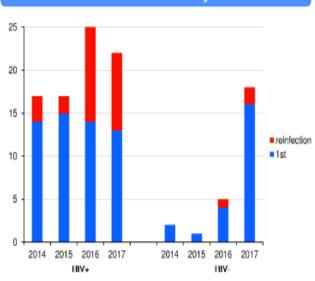
- *Incident Swiss HCV Infections in HIV+ MSM
- * Chronic from Switzerland
- *UK
- * Germany
- * The Netherlands
- * Other Countries in Europe
- * Outside Europe
- * Unknown

Salazar-Vizcaya L, et al. 25th CROI; Boston, MA; March 4-7, 2018. Abst. 130.

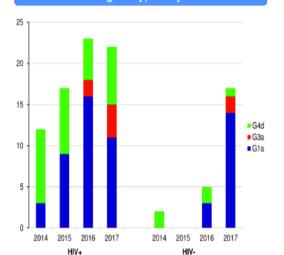
HCV: The Next STD in MSM on PrEP?

- ANRS IPERGAY PrEP Study
- HCV antibody test:
 - Baseline
 - 6-monthly
- 25 sex partners in the last2 months
- 15x sex in the last 4 weeks
- 92% unprotected receptive anal intercourse
- 54% chemsex

Gras J, et al. 25th CROI; Boston, MA; March 4-7, 2018. Abst. 585.



Strong increase of acute HCV infections in HIV-negative men having sex with men Lyon, 2014-2017


Laurent Cotte, Marie Astrie, Anne-Claire Uhres, François Bailly, Sylvie Radenne, Christophe Ramière, Corinne Brochier, Patrick Miailhes, Mary-Anne Trabaud, Jean-Claude Tardy, Mathieu Godinot, Pierre Pradat for the Lyon Acute Hepatitis Study Group

Acute hepatitis in HIV- MSM Acute HCV infections by year 26 cases / 24 patients 35 Before PrEP No PrEP 3 30 25 Reinfection @ PrEP screening 1st infection @ PrEP screening HIV-20 ■HIV+ 15 Reinfection during PrEP FU 1st infection during PrEP FU 10 5 2014 2015 2016 2017 1st hepatitis 23 Reinfections 3

1st infection / reinfection by HIV status

Evolution of genotypes by HIV status

Update sulla gestione della coinfezione HIV/HCV

- Different patients population: rapidly progressive disease in HIV with different virologic (genotype distribution) and personal characteristics (age and gender)
- HiV coinfection does not influence anti HCV treatment response when adjusting for patients characteristics
- Uptake of HIV coinfected patients -> reduction of HCV circulation in this population but viruses have no borders
- PREP → HCV acute infection in HIV- MSM